УДК 004.89

DOI: https://doi.org/10.18664/1994-7852.159.2016.66984

БЕСПОРШНЕВЫЕ УНИВЕРСАЛЬНЫЕ БЕТОНОНАСОСЫ НОВОГО КОНСТРУКТИВНОГО РЕШЕНИЯ С ГИДРАВЛИЧЕСКИМ ПРИВОДОМ ДЛЯ УСЛОВИЙ СТРОИТЕЛЬНОЙ ПЛОЩАДКИ

Д-р техн. наук И.А. Емельянова, асп. Д.О. Чайка

БЕЗПОРШНЕВІ УНІВЕРСАЛЬНІ БЕТОНОНАСОСИ НОВОГО КОНСТРУКТИВНОГО РІШЕННЯ З ГІДРАВЛІЧНИМ ПРИВОДОМ ДЛЯ УМОВ БУДІВЕЛЬНОГО МАЙДАНЧИКА

Д-р техн. наук І.А. Ємельянова, асп. Д.О. Чайка

NOT PISTONS UNIVERSAL CONCRETE PUMP NEW CONSTRUCTIVE SOLUTIONS WITH HYDRAULIC ACTUATORS FOR THE CONSTRUCTION SITE.

Doct. of techn. I.A. Emeljanova, graduate student D.O. Chayka

Целью написаной статьи явилось представление новой конструкции беспоршневого универсального бетононасоса с гидравлическим приводом и предлагаемым подходом к определению его работоспособности.

Разработана гидравлическая схема для управления универсальным шланговым бетононасосом и описана сущность ее работы.

Ключевые слова: универсальный шланговый бетононасос, гидравлический привод, крутящий момент, работоспособность, подвижность смеси.

Метою написаної статті стало подання нової конструкції беспоршневого універсального бетононасоса з гідравлічним приводом і пропонованим підходом для визначення його працездатності.

Розроблена гідравлічна схема для управління універсальним шланговим бетононасосом і описана сутність її роботи.

Ключові слова: універсальний шланговий бетононасос, гідравлічний привод, крутний момент, працездатність, рухливість суміші.

Presents a new universal design without piston concrete pump with hydraulic drive.

A distinctive feature of the hydraulic circuit is the ability to control the operating parameters of the concrete pump when used for work on a different performance $(Q = 1 \dots 15)$ according to the diameter of interchangeable hoses $(D = 32 \dots 75 \text{ mm})$.

A hydraulic circuit for controlling a universal concrete pump hose and described the essence of her work.

The flow pattern used by the application of high-torque motors, which allow you to work, if necessary, concrete pump at low speeds.

The possibility of analysis of its performance in accordance with the above procedure.

Keywords: Universal hose concrete pump, hydraulic drive, torque, efficiency condition, the mobility of the mixture.

Для выполнения ремонтов и укрепления горных массивов реконструкции действующих зданий и рекомендуется использование комплектов сооружений, строительства тоннелей, малогабаритного оборудования для

проведения торкрет-работ мокрым способом, которые разработаны Харьковском национальном университете строительства и архитектуры, изготовлены и прошли широкую апробацию в условиях строительства на различных объектах Харькова и других городов Украины [1,2]. настоящее время создается беспоршневой универсальный бетононасос конструктивного нового решения гидравлическим приводом, который также может быть рекомендован для решения вышеуказанных проблем [3].

В основу работы бетононасоса положена концепция механической мышцы - когда под действием силы прижатия ролика изменяется проходное сечение упругого шланга И бетонная смесь проталкивается от входа шланга к его выходу, создавая, таким образом, роликом зону пониженного давления, в которую поступает бетонная смесь из бункера.

На рис. 1 представлен беспоршневой бетононасос, на который установлен гидравлический привод.

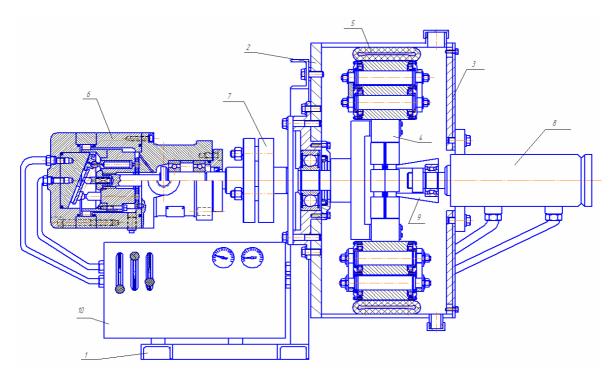


Рис. 1. Схема беспоршневого универсального бетононасоса нового конструктивного решения с гидравлическим приводом:

1 – рама; 2 – корпус насоса; 3 – крышка корпуса; 4 – ротор с роликами; 5 – гибкий шланг; 6 – гидромотор; 7 – муфта; 8 – гидроцилиндр; 9 – конический наконечник; 10 – гидрораспределительный узел

На рис. 2 показана предлагаемая гидравлическая схема для беспоршневого универсального бетононасоса нового конструктивного решения.

Гидравлическая схема работает следующим образом.

При включении электродвигателя M приводится во вращение вал насоса H и

рабочая при выходе через жидкость гидрораспределитель P4 сливается в бак \overline{B} . Этим обеспечивается минимальный нагрев жидкости при неработающей рабочей гидросистеме. Золотник Р4 находится в таком положении, как показано на рис. 2. При запуске бетононасоса подается ток на электромагнит *Y*7 И золотник гидрораспределителя P4 смещается влево, перекрывая слив рабочей жидкости в бак E. Таким образом, насос будет запущен без

рывков и пикового повышения давления при нагнетании масла.

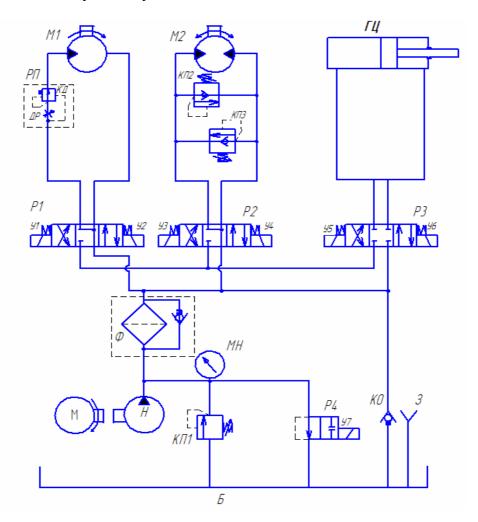


Рис. 2. Гидравлическая схема бетононасоса:

H — насос; M1, M2 — высокомоментные гидромоторы; $P\Pi$ — регулятор потока; MH — манометр; $K\Pi I$ — клапан предохранительный; $K\Pi 2$, $K\Pi 3$ — антикавитационные клапана; P1, P2, P3, P4 — распределитель; KO — клапан обратный; ΓU — гидроцилиндр; Φ — фильтр

Настройку давления в гидросистеме производят предохранительным клапаном $\Pi K1$ и контролируют манометром MH. Рабочая жидкость при выходе из насоса H через фильтр Φ поступает на входы гидрораспределителей P1, P2, P3 с электромагнитным управлением. Линии слива P1, P2 и P3 соединены через обратный клапан OK, настроенный на давление 0,05 МПа, с баком E. Таким

образом, обеспечивается плавное включение в работу гидромоторов M1, M2 и гидроцилиндра ΓU .

Гидромотор M1 приводит в действие вал ворошителя, расположенного в загрузочном бункере бетононасоса. Регулятор потока $P\Pi$ поддерживает с помощью дросселя $\mathcal{A}P$ стабильную работу гидромотора M1, независимо от перепада давления подводимого и отводимого

потоков рабочей жидкости, обеспечивая, таким образом, требуемую частоту вращения вала ворошителя. Регулирование частоты вращения гидромотора M1 осуществляется настройкой дросселя $\mathcal{I}P$ регулятора потока $P\Pi$.

Включение гидромотора M2, который приводит в действие ротор бетононасоса, обеспечивается подачей тока *Y3* электромагниты или *Y4* гидрораспределителя P2, при этом В зависимости наличия otуправляющих электромагнитах гидромотор М2 вращается влево или вправо. В этом случае магистраль питания гидросистемы одной соединяется c ИЗ полостей гидромотора M2, а вторая его полость – со сливом. Для защиты OT перегрузок

(забросов давления) при резком разгоне или торможении бетононасоса магистрали подвода отвода рабочей жидкости гидромотора M2снабжены предохранительно антикавитационными клапанами КП2 и КП3. Регулирование вращения гидромотора частоты осуществляется регулированием давления в гидросистеме бетононасоса с помощью предохранительного клапана КП.

Через гидрораспределитель P3 обеспечивается работа гидроцилиндра ΓU , шток которого управляет механизмом прижатия роликов ротора бетононасоса к шлангу подачи бетонной смеси.

На рис. 3 представлена расчетная схема для определения крутящего момента на валу ротора бетононасоса.

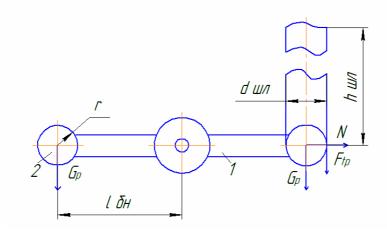


Рис. 3. Расчетная схема для определения крутящего момента на валу ротора бетононасоса: 1 – рычаг; 2 – ролик

Согласно расчетной схеме определяется крутящий момент на валу ротора бетононасоса:

$$\mathbf{M}_{\mathrm{KP} \text{ B } \delta \mathrm{H}} = F_g l_{\delta \mathrm{H}} + F_{\mathrm{TP} \text{ } \mathrm{UL}} (l_{\delta \mathrm{H}} + r_{\mathrm{p}}) \tag{1}$$

где $F_{\rm g}$ — сила, обусловленная весом бетонной смеси, находящейся в шланге;

 $F_{_{\mathrm{Tp}\,\mathrm{III}}}$ — сила трения между роликом и шлангом;

 $F_{\rm np}$ — сила прижима ролика к шлангу.

$$F_{\rm g} = \frac{\pi d_{\rm min}^2}{4} \rho_0 g h_{\rm min} \qquad (2)$$

где $d_{\text{шл}}$ – внутренний диаметр шланга, м; ρ_0 – плотность бетона, кг/ м³;

g – ускорение свободного падения, м/с 2 ; $h_{\rm шл}$ – максимальная высота подачи бетонной смеси насосом по шлангу, м.

$$F_{\rm Tp \, m\pi} = \frac{k_{\rm Tp \, m\pi}}{r_{\rm p}} F_{\rm np},\tag{3}$$

где $k_{\text{тр шл}}$ – коэффициент трения, имеющий место в результате взаимодействия роликов вращающегося ротора с внешней поверхностью шланга, м;

 $k_{
m TP\ IIII}=15\ ...35\$ мм [4], принимаем, $k_{
m TD\ IIII}=25\$ мм;

 $r_{\rm p}$ – радиус ролика, м.

$$F_{\rm np} = c_{\rm mn} d_{\rm mn}, \tag{4}$$

где $c_{\text{шл}}$ — приведенная жесткость шланга, H/M.

Зная крутящий момент на валу ротора, определяются основные параметры работы выбранного гидромотора [6].

Рабочий объем гидромотора:

$$q'_{\scriptscriptstyle \Gamma M} = \frac{2\pi M_{\scriptscriptstyle KP \, max} \eta'_{\scriptscriptstyle \Gamma M \, O}}{\Delta p_{\scriptscriptstyle \Gamma M \, H \, \Pi DP A} \eta'_{\scriptscriptstyle \Gamma M}}, \qquad (5)$$

где $\Delta p_{\text{гм н пред}}$ – существующий перепад давлений в гидросистеме бетононасоса от гидромотора M2, $\Pi a = 21 \dots 25 \text{ M}\Pi a$ [7].

Определение минимальной частоты вращения вала гидромотора производится согласно зависимости

$$n_{\min} = (0.75 \dots 1.5) \frac{10^3 Q_{\text{yt}}}{q_{\text{rm}}} = (0.75 \dots 1.5) \frac{10^3 (1 - \eta_{\text{of rm}}) Q_{\text{hom rm}}}{q_{\text{rm}}},$$
 (6)

где $Q_{\rm yr}$ — суммарные утечки в гидромоторе, л/мин;

 $\eta_{\text{об гм}}$ и $Q_{\text{ном гм}}$ – соответственно объемный КПД и номинальный расход гидромотора, л/мин.

На рис. 4 представлена расчетная схема для проверки работоспособности шлангового беспоршневого бетононасоса.

Работоспособность шлангового бетононасоса определяется исходя из условий перепада давлений в транспортном трубопроводе при всасывании бетонной смеси из загрузочного бункера.

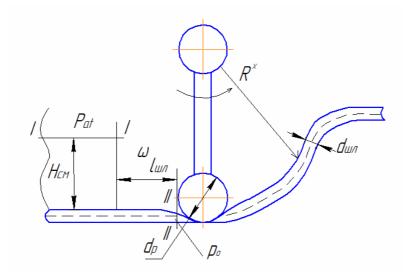


Рис. 4. Расчетная схема для определения работоспособности бетононасоса

Для проверки работоспособности использовано уравнение Бернулли относительно сечений I-I, II-II

$$H_{\rm cm} = \frac{p_0 - p_{\rm at}}{\rho_{\rm 6}g} + (1 + \zeta_{\Sigma}) \frac{v_{cm}^2}{2g} , \qquad (7)$$

где $H_{\text{см}}$ — высота столба бетонной смеси в бункере, м, $H_{\text{см}}$ = 0,255 м;

 p_0 и $p_{\rm ar}$ — соответственно давление за роликом и атмосферное давление, Па;

 ρ_{6} – плотность бетонной смеси, кг/м³;

 ζ_{Σ} и V_{cM} – соответственно суммарные потери давления и скорость движения бетонной смеси в трубопроводе [9], м/с.

Из уравнения (7) определяется p_0

$$p_0 = \rho_6 g H_{\text{cm}} + p_{\text{at}} - (1 + \zeta_{\Sigma}) \rho_6 \frac{v_{cM}^2}{2}; \quad (8)$$

$$p_0 = -0.8338215 \text{ MHz};$$

 p_{0I} = - 0,011277 Мпа; Вакуум – 0,113 кг/см². В конечном итоге проверка бетононасоса на его работоспособность производится как:

$$\rho_{6}gH_{cM} + p_{aT} \ge (1 + \zeta_{\Sigma})\rho_{6}\frac{v_{cM}^{2}}{2}.$$
 (9)

Выводы

- 1. Разработаны принципиальная схема шлангового бетононасоса и гидравлическая схема управления его работой. Отличительной особенностью гидросхемы является использование высокомоментных гидромоторов, что позволяет отказаться от механического привода, благодаря чему повышается надежность и долговечность работы бетононасоса.
- 2. Впервые определены условия работоспособности шлангового беспоршневого бетононасоса с гидравлическим приводом.

Список использованных источников

- 1. Малогабаритное оборудование для транспортирования бетонных смесей и выполнения торкрет-работ [Текст] / И.А. Емельянова, А.И. Анищенко, Н.А. Меленцов, А.Т. Гордиенко // Вестник МСГУ: Науч.-техн. журнал. 2013. №5. С.87-95.
- 2. Универсальное малогабаритное оборудование для условий ремонта и реконструкции действующих зданий и сооружений различного назначения [Текст] / И.А. Емельянова, А.И. Онищенко, В.Ю. Шевченко, Н.А. Меленцов // Наука в центральной России: науч.производств. периодич. журнал. Тамбов, 2013. №4. С.5-13.
- 3. Емельянова, И.А. Универсальный шланговый бетононасос нового конструктивного решения [Текст] / И.А. Емельянова, Д.О. Чайка // Материалы международной научнотехнической конференции «Интерстроймех 2015». Казань, 2015. С.81-85.
- 4. Онищенко, О.Г. Структура кинематика и динамика механизмов [Текст] / О.Г. Онищенко, Б.А. Коробко, К.М. Ващенко. Полтава: ПолНТУ, 2010. 274 с.
- 5. Свешников, В.К. Станочные гидроприводы; справочник [Текст] / В.К. Свешников, А.А. Усов. М.: Машиностроение, 1988. 456 с.
- 6. Расчет, проектирование и эксплуатация объемного гидропривода [Текст] / 3.Л. Финкельштейн, О.М. Яхно [и др.]. К.: НТУ «КПИ», 2006. 216 с.
- 7. Аврунин, Г.А. Гидравлическое оборудование строительных и дорожных машин [Текст] / Г.А. Аврунин, И.Г. Кириченко, В.Б. Самородов; под ред. Г.А. Аврунина. Харьков: XHAJY, 2012. 464 с.
- 8. Аврунин, Г.А. Объемный гидропривод и гидропневмоавтоматика [Текст]: учеб. пособие / Г.А. Аврунин, И.В. Грицай, И.Г. Кириченко [и др.]. Харьков: ХНАДУ, 2008. 412 с.

9. Приходько, О.А. Технічна аерогідромеханіка [Текст]: навч. посібник / О.А. Приходько, Д.О. Сьомін. – Луганськ: СНУ ім. В. Даля, 2002. – 170 с.

Ємельянова Інга Анатоліївна, доктор технічних наук, професор кафедри механізації будівельних процесів Харківського національного університету будівництва та архітектури. Тел.: (057) 700-17-84. E-mail: emeljanova-inga@rambler.ru.

Чайка Деніс Олегович аспірант, кафедра механізації будівельних процесів Харківського національного університету будівництва та архітектури. E-mail: d.chayka93@mail.ru.

Emeljanova Inga A. Ph.D., Professor Department of mechanization of construction processes Kharkov National University of Construction and Architecture. Tel.: (057) 700-17-84. E-mail: emeljanova-inga@rambler.ru.

Chayka Denis O. graduate student, department of mechanization of construction processes Kharkov National University of Construction and Architecture.

Прийнята 13.02.2016 р.