ФУНДАМЕНТАЛЬНІ РОЗВ'ЯЗКИ ПРИВЕДЕНОГО РІВНЯННЯ ПАРАМЕТРИЧНИХ КОЛИВАНЬ

Автор(и)

  • Yuriy Krutiy проректор Одеської державної академії будівництва та архітектури, Україна
  • Nikolay Suryaninov завідувач кафедри будівельної механіки Одеської державної академії будівництва та архітектури, Україна

DOI:

https://doi.org/10.18664/1994-7852.167.2017.97120

Ключові слова:

параметричні коливання, рівняння Матьє, метод прямого інтегрування, матрицант, фундаментальні розв'язки

Анотація

Визначено фундаментальні розв'язки рівняння Матьє при нульовому параметрі a й довільному параметрі q з використанням методу прямого інтегрування. Поряд з вихідним рівнянням Матьє розглядається рівносильна йому система рівнянь. Фундаментальні розв'язки шукаються у вигляді степеневого ряду. Побудована фундаментальна матриця розв'язків рівносильної системи рівнянь. Показано, що ця матриця визначається однозначно і є матрицантом. Загальний розв'язок рівносильної системи диференціальних рівнянь виражається за допомогою матрицанта відомою формулою, звідки виходить загальний розв'язок вихідного рівняння Матьє

Посилання

Пановко, Я. Г. Внутреннее трение при колебаниях упругих систем [Текст] / Я.Г. Пановко. — М.: Физматгиз, 1960. — 193 с.

Бейтмен, Г. Высшие трансцендентные функции. Т. 3. Эллиптические и автоморфные функции. Функции Ламе и Матье [Текст] / Г. Бейтмен, А. Эрдейи. – М.: Наука, 1967. – 301 с.

Бейтмен, Г. Высшие трансцендентные функции. Т. 2. Функции Бесселя, функции параболического цилиндра, ортогональные многочлены [Текст] / Г. Бейтмен, А. Эрдейи. ― М.: Наука, 1974. ― 297 с.

Уиттекер, Э.Т. Курс современного анализа. Ч. 2. Трансцендентные функции [Текст] / Э. Т. Уиттекер, Дж. Н. Ватсон. ― М.: Физматлит, 1963. ― 500 с.

Ватсон, Дж. Н. Теория бесселевых функций [Текст] / Дж. Н. Ватсон. ― М.: Иностранная литература, 1949. – Ч. 1. ― 799 с.

Ishibashi K. Simple conditions for parametrically excited oscillations of generalized Mathieu equations / K. Ishibashi, J. Sugie // Journal of Mathematical Analysis and Applications. ― Volume 446, Issue 1, 1 February 2017. ― P. 233–247.

Gadella M. Periodic analytic approximate solutions for the Mathieu equation / M. Gadella, H. Giacomini, L.P. Lara // Applied Mathematics and Computation, 271 (2015). ― P. 436–445.

Mohamad M.A. Sapsis Probabilistic response and rare events in Mathieu's equation under correlated parametric excitation / M.A. Mohamad, T.P. Sapsis // Ocean Engineering Volume 120, 1 July 2016. ― P. 289–297.

Крутий, Ю. С. Задача Эйлера в случае непрерывной поперечной жесткости [Текст] / Ю. С. Крутий // Строительная механика и расчет сооружений. ― 2010. ― № 6. ― С. 2229.

Крутий, Ю. С. Задача Эйлера в случае непрерывной поперечной жесткости (продолжение) [Текст] / Ю. С. Крутий // Строительная механика и расчет сооружений. ― 2011. ― № 2. ― С. 27  33.

Krutiy Yu. S. Forced harmonic oscillations of the Euler-Bernoulli beam with resistance forces / Yu. S. Krutiy // Odes’kyi Politechichnyi Universytet. Pratsi. Machine building. Process Metallurgy: materials Science. ― Odessa, 2015. ― № 3(47). ― P. 916.

Крутій, Ю. С. Точний розв’язок диференціального рівняння вимушених поздовжніх коливань стержня з довільними неперервними параметрами [Текст] / Ю. С. Крутій // Вісник Хмельницького національного університету. Серія: Технічні науки. ― Хмельницький, 2015. ― № 6. ― С. 2329.

Крутій, Ю. С. Чисельна реалізація аналітичного розв’язку задачі про вільні коливання прямокутної пластини, що лежить на змінній пружній основі [Текст] / Ю.С. Крутій, М. Г. Сур’янінов // Наукові нотатки: міжвуз. зб. Сер. Технічні науки. ― Луцьк, 2016. ― №2 (54) ― С. 167171.

Крутій, Ю. С. Згин кругової циліндричної оболонки зі змінною товщиною [Текст] / Ю. С. Крутій, Н. Г. Сур’янінов // Вісник Хмельницького національного університету. Сер. Технічні науки. ― Хмельницький, 2016. ― №2 (235). ― С. 116–121.

Федорюк, М. В. Обыкновенные дифференциальные уравнения [Текст] / М. В. Федорюк. ― М.: Наука, 1985. ― 448 с.

Гантмахер, Ф. Р. Теория матриц [Текст] / Ф. Р. Гантмахер. ― М.: Наука, ., 1988. ― 552 с.

##submission.downloads##

Опубліковано

2017-03-29

Номер

Розділ

Статті